
Volume Three—Feedback Loops 10 December2002 i

Chapter One: Contents
 (Shared Rides and Long Walks to School – 10 December 2002 – LA-UR 01-5713
– Portland Study Reports)

1. FIXING SHARED RIDE PROBLEMS FROM INCOMPLETE SURVEY MATCH1

2. IMPLEMENTATION...4
2.1 IDENTIFYING THE PROBLEM HOUSEHOLDS ... 4
2.2 ITERATIVELY REGENERATING ACTIVITIES FROM A SURVEY HOUSEHOLD REMATCH........ 4

3. CREATING A MERGED ACTIVITY SET ..6

4. FIXING LONG WALK/BIKE TRIPS TO SCHOOL...7
4.1 CREATING AN ITERATION DATABASE.. 7
4.2 IDENTIFYING LONG WALK/BIKE TRIPS TO SCHOOL .. 7
4.3 MODE CHANGE TO SCHOOL BUS USING ACTIVITY REGENERATOR 7

5. IMPLEMENTATION...8
5.1 CREATING AN ITERATION DATABASE.. 8
5.2 IDENTIFYING LONG WALK/BIKE TRIPS TO SCHOOL .. 8
5.3 MODE CHANGE TO SCHOOL BUS USING ACTIVITY REGENERATOR 9

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 1

Chapter One—Shared Rides and Long Walks to
School

1. FIXING SHARED RIDE PROBLEMS FROM INCOMPLETE
SURVEY MATCH
The TRANSIMS Activity Generator (see the general documentation) determines the
initial household activity patterns by matching a synthetic household with a survey
household based on household and person demographics. Each individual in the survey
household does not necessarily match every individual in the synthetic household. This
can produce problems assigning intra-household shared rides since the driver's activity
pattern from the survey household may not be present in the synthetic household.

Example:

If the matching criteria is number of workers and household size, the following
households could be matched using the above criteria:

• Synthetic HH - 4 person: 1 worker, 1 adult and 3 children.

• Survey HH - 4 person: 1 worker, 2 adults and 2 children.

The worker from the synthetic household would receive the activity pattern from the
worker in the survey household. The children in the synthetic household receive the
activity patterns of the children in the survey household with one child's activity pattern
repeated for the third child in the synthetic household. The activity pattern for the second
adult in the survey household is not used in the synthetic household.

This unmatched survey adult is the driver of the shared rides that transport the survey
children to activities throughout the day. The children in the synthetic household are
passengers that need to match with a driver's activity pattern that does not exist in the
synthetic household.

The Activity Generator detects this condition and reports a problem (type 1) in the
problem file, then changes the mode of the children's activities to an inter-household
shared ride, which we call "magic move".

This problem can be corrected in most of the synthetic households by iteratively selecting
another survey household match. The Activity Regenerator has a command (R) that
requests another survey household match to obtain a different activity pattern for the
synthetic household. The Activity Regenerator reports a problem of type 1 in the problem
file for any remaining households that were not corrected by the survey household
rematch. This problem file is used as the basis for the next iteration where the rematch is
again requested for the remaining problem households.

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 2

Problem File Feedback
Command File

Activity
Regenerator

Partial Activity Set 1 . . . Partial Activity Set 10

Fig. 1. Process to fix shared ride problems caused by incomplete survey household
match.

Fig. 1 illustrates the steps in the process:

• Use the Activity Generator problem file to determine which households have problem
type 1 (Bad Shared Ride Match).

• Create a feedback command file for the Activity Generator that has a rematch request
for each of these households.

• Run the Activity Regenerator to resample the survey households, generate a new
activity pattern, and report remaining households with the problem in the Activity
Generator problem file.

Repeat the process until few households remain with this problem.

This process, along with the school bus corrections (see Section 4 of this Chapter), was
applied to activity set AS-1 (see Fig. 3 in Volume One (Introduction/Overview), Chapter
Three (The Modules)) to produce activity set AS-2. After the initial Portland activity
generation creating AS-1, 11,942 households had this problem. After 10 iterations were
completed, the problem was reported in 294 households.

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 3

Table 1. Number of households with shared ride problems by iteration.

Iteration Number Problem
Households

0 11941
1 3752
2 2012
3 1327
4 972
5 735
6 603
7 476
8 406
9 346
10 294

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 4

2. IMPLEMENTATION

2.1 Identifying the Problem Households

The first step in the process is to extract the problem households from the Activity
Generator problem file. Multiple problem files may exist from the initial activity
generation if the Activity Generator was executed in parallel. These files should be
concatenated to form a single problem file that will be the basis for the shared ride
iterations. The problem as reported in the problem file has the following format:

 1 3 <hh> <person> <activity>

Example:

 1 3 4389 8476 12

The Unix utility awk is used to parse the problem file and create a feedback command file
that requests a survey household rematch for the problem households in the file. A
household may have multiple entries in the problem file; however, only one rematch
request is needed per household. The Unix utility sort with the command line argument
to remove duplicate lines is used to remove the duplicate household entries.

The format of the Activity Regenerator rematch command is

 <household id> R

The following command sequence is used to create the feedback command file from the
problem file.

% /usr/bin/awk '{if ($1==1) print $3 " R"}' $PROBLEM_FILE | /bin/sort -n -u > $FEEDBACK_COMMANDS

where PROBLEM_FILE is the starting problem file produced by the Activity Generator
and FEEDBACK_COMMANDS is the name of the feedback command file that is produced.

2.2 Iteratively Regenerating Activities From a Survey
Household Rematch

The Activity Regenerator uses configuration file keys to specify the name of the feedback
command file (ACT_FEEDBACK_FILE), the name of the problem file that is produced
(ACT_PROBLEM_FILE), and the name of the file containing the regenerated activities
(ACT_PARTIAL_OUTPUT). If a key is specified multiple times in the configuration file,
the last specification overrides all other specifications of the key. This feature is used to
iteratively change the name of the feedback file, the problem file, and the regenerated
activities file by appending the appropriate key values for the iteration to the
configuration file, then starting the Activity Regenerator for the next iteration.

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 5

Ten iterations were used for the Portland activity set. The following illustrates the main
loop through the iterations:

• Append the appropriate configuration file key values to the configuration file.

• Run the Activity Regenerator.

• Extract the remaining problem households from the problem file produced by the
Activity Regenerator and produce a feedback command file for the next iteration

• Increment the iteration counter and go to next iteration.

Do 10 iterations
for each i (1 2 3 4 5 6 7 8 9 10)
 echo "Activity Regenerator for shared rides iteration " $i >>&!
$LOG_DIR/ActivityRegenerator.log
 echo "ACT_FEEDBACK_FILE " $FEEDBACK_COMMANDS.$ITER >> $TMP_CONFIG
 echo "ACT_PARTIAL_OUTPUT " $PARTIAL_FILE.$i >> $TMP_CONFIG
 echo "ACT_PROBLEM_FILE " $PROBLEM_FILE.$i >> $TMP_CONFIG
 $TRANSIMS_HOME/bin/ActivityRegenerator $TMP_CONFIG >>&!
$LOG_DIR/ActivityRegenerator.log
 setenv ITER `echo $ITER+1 | /usr/bin/bc`
 /usr/bin/awk '{if ($1==1) print $3 " R"}'
$PROBLEM_FILE.$i | /bin/sort -n -u > $FEEDBACK_COMMANDS.$ITER
end

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 6

3. CREATING A MERGED ACTIVITY SET
After the iterations are complete, ten files with regenerated activities for problem
households are produced. These files must be combined with the original activity set to
produce a "corrected" activity set. A single household may appear multiple times in the
regenerator activity sets. The combined activity set should contain the most recent
activity set for a regenerated household. The regenerated activities are combined with the
original activities by creating a merged index and then using the merged index to create a
merged activity file. The Activity Regenerator creates a household index for each of the
regenerated activity files. The MergeIndices program uses these index files and the
household index for the original activity set to produce a merged index. The index files to
merge are command line arguments to the program. The order of the arguments is
important. MergeIndices combines the indexes in order of their appearance on the
command line. The entries for a household found later on the command line will override
the entries for the same household in an index file processed previously.

$TRANSIMS_HOME/bin/MergeIndices $ACTIVITY_FILE.merged.hh.idx
$ACTIVITY_FILE.hh.idx
$PARTIAL_FILE.1.hh.idx
$PARTIAL_FILE.2.hh.idx
$PARTIAL_FILE.3.hh.idx
$PARTIAL_FILE.4.hh.idx
$PARTIAL_FILE.5.hh.idx
$PARTIAL_FILE.6.hh.idx
$PARTIAL_FILE.7.hh.idx
$PARTIAL_FILE.8.hh.idx
$PARTIAL_FILE.9.hh.idx
$PARTIAL_FILE.10.hh.idx

where $ACTIVITY_FILE.merged.hh.idx is the name of the merged index that will be
produced, $ACTIVITY_FILE.hh.idx is the household index of the original activity set, and
$PARTIAL_FILE.?.hh.idx are the household indexes of the regenerated activity sets
named in the order in which they were produced.

A merged activity file is produced from the merged index using the IndexDefrag
program.

$TRANSIMS_HOME/bin/IndexDefrag $ACTIVITY_FILE.merged.hh.idx
$ACTIVITY_FILE.sfb

where $ACTIVITY_FILE.merged.hh.idx is the name of the merged index file created by
MergeIndices, and $ACTIVITY_FILE.sfb is the name of the merged activity set that will
be produced.

Refer to the FixSharedRides script in Volume Seven (Appendix: Scripts, Configuration
Files, Special Travel Time Functions).

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 7

4. FIXING LONG WALK/BIKE TRIPS TO SCHOOL
The initial activity set from the Activity Generator will have some persons who have long
walks or bicycle trips to school. This occurs because the synthetic households have
activity and initial mode patterns from the survey households. Although the survey
household locations may have been within walk/bike distance of school, the synthetic
household has different locations that make the walk/bike mode choice infeasible. The
solution is to identify these trips and change the mode to school bus.

4.1 Creating an Iteration Database

Create an iteration database from the activity set that contains the appropriate fields to
identify the long walk/bike trips. The Collator is used to create the database. Trips in the
iteration database consist of the travel that occurred between the starting activity location
and the end activity location. The information needed is the starting activity location, the
end activity location, the type of the end activity, the mode used to arrive at the end
activity, and the distance between the starting and ending activity locations.

4.2 Identifying Long Walk/Bike Trips to School

The ending activity type field in the iteration database identifies school trips (type = 7),
and the Euclidean distance field gives the distance in meters between the starting location
of the trip and the school (end) location. The mode field indicates if the trip was walk
(mode = 1) or bike (mode = 7).

For those walk trips greater than 2,500 meters and for bicycle trips greater than 7,500
meters, format an Activity Regenerator command to change the mode to school bus
(mode 9). Store the commands in a feedback command file that will be used by the
Activity Regenerator.

4.3 Mode Change to School Bus using Activity Regenerator

The Activity Regenerator uses the feedback command file and changes the mode of the
travelers with long walk/bikes to school to school bus. The partial activity file from the
Regenerator will contain the households with mode changes and must be merged back
into the original activity set.

The initial activity set contained 9,819 long walk/bike trips to school. The mode of these
trips was changed to school bus (mode 9).

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 8

5. IMPLEMENTATION

5.1 Creating an Iteration Database

The Collator is run in parallel to create iteration databases that are then combined to form
a single iteration database. The number of Collator processes and hence, the number
iteration databases produced, may be sized to the number of processors available. Ten
Collator processes were used to create the iteration databases. The MakeHouseholdFile
program was used to split the households in the population (and the activity set) into 10
portions. The household files are named with a special suffix (.tXX) where XX is a
conversion of a number into an alphabetic string. The numbering starts at 0, which
converts to AA, then sequentially increases (1 = AB, 2 = AC, ...). Household files hh.tAA
- hh.tAJ are produced by the MakeHouseholdFile. The Collator is started on 10
processors with a numerical rank from 0 to 9 as a command line argument. The Collator
processes will look for the appropriate household file and create an iteration database
containing information for those households only. The separate databases are
concatenated into a single database with the header lines removed from the second to nth
database.

Use the following configuration file keys in the configuration file for the Collator to
produce the appropriate data columns:

SEL_USE_START_ACT_TYPE,
SEL_USE_START_ACT_LOCATION,
SEL_USE_START_MODE_PREF,
SEL_USE_END_MODE_PREF,
SEL_USE_END_ACT_TYPE,
SEL_USE_END_ACT_LOCATION,
SEL_USE_EUCLID.

Refer to the script RunCollatorInParallel in Volume Seven (Appendix)

5.2 Identifying Long Walk/Bike Trips to School

A perl script is used to parse the iteration database and identify the long walk/bike trips to
school. For each identified trip, an Activity Regenerator command is created and written
to a file. The Regenerator command used is MS, which changes the mode for a single
activity. Format of the command that appears in the feedback command file is

 <hhid> <activity id> MS 9

Refer to the FixSchoolWalk and FindLongWalks.pl scripts in Volume Seven (Appendix:
Scripts, Configuration Files, Special Travel Time Functions).

Chapter One—Shared Rides / Long Walks Portland Study Reports

Volume Three—Feedback Loops 10 December2002 9

5.3 Mode Change to School Bus using Activity Regenerator

Run the Activity Generator using the mode change feedback commands generated above.
The Activity Regenerator creates a partial activity set that contains only those households
that have the requested mode changes. This partial activity set is then merged with the
starting activity set to create an activity set that contains the changed households along
with the other unchanged households in the original activity set. The MergeIndices and
IndexDefrag programs are used to do the merging.

Chapter One—Shared Rides / Long Walks Portland Study Reports

	Fixing Shared Ride Problems from Incomplete Survey Match
	Implementation
	Identifying the Problem Households
	Iteratively Regenerating Activities From a Survey Household Rematch

	Creating a Merged Activity Set
	Fixing Long Walk/Bike Trips to School
	Creating an Iteration Database
	Identifying Long Walk/Bike Trips to School
	Mode Change to School Bus using Activity Regenerator

	Implementation
	Creating an Iteration Database
	Identifying Long Walk/Bike Trips to School
	Mode Change to School Bus using Activity Regenerator

